Main
 
BUDI SANTOSOSaturday, 21.12.2024, 7:13:30 PM



Welcome Guest | RSS
Main
Site menu

Section categories
BERITA SERBA SERBI
BERITA UMUM
BERITA UNIK,LUCU DAN ANEH
BERITA YANG UNIK DAN YANG ANEH
EKONOMI DAN BISNIS
EKONOMI DAN BISNIS
BERITA POLITIK, HUKUM DAN KRIMINAL
BERITA POLITIK, HUKUM DAN KRIMINAL
SOSIAL DAN KEMASYARAKATAN
BERITA SOSIAL DAN KEMASYARAKATAN
MP3
Kumpulan MP3
SENI DAN BUDAYA
SENI DAN BUDAYA
GAME
KATA - KATA MUTIARA
FILM
PUISI DAN PANTUN

DETIK

Statistics

Total online: 7
Guests: 7
Users: 0

Main » 2011 » July » 24 » KALKULUS
12:27:58 PM
KALKULUS
Kalkulus

Kalkulus diferensial adalah salah satu cabang kalkulus dalam matematika yang mempelajari bagaimana nilai suatu fungsi berubah menurut perubahan input nilainya. Topik utama dalam pembelajaran kalkulus diferensial adalah turunan. Turunan dari suatu fungsi pada titik tertentu menjelaskan sifat-sifat fungsi yang mendekati nilai input. Untuk fungsi yang bernilai real dengan variabel real tunggal, turunan pada sebuah titik sama dengan kemiringan dari garis singgung grafik fungsi pada titik tersebut. Secara umum, turunan suatu fungsi pada sebuah titik menentukan pendekatan linear terbaik fungsi pada titik tersebut.
Proses pencarian turunan disebut pendiferensialan (differentiation). Teorema dasar kalkulus menyatakan bahwa pendiferensialan adalah proses keterbalikan dari pengintegralan.
Turunan mempunyai aplikasi dalam semua bidang kuantitatif. Di fisika, turunan dari perpindahan benda terhadap waktu adalah kecepatan benda, dan turunan dari kecepatan terhadap waktu adalah percepatan. Hukum gerak kedua Newton menyatakan bahwa turunan dari momentum suatu benda sama dengan gaya yang diberikan kepada benda.
Laju reaksi dari reaksi kimia juga merupakan turunan. Dalam riset operasi, turunan menentukan cara paling efisien dalam memindahkan bahan dan mendesain pabrik. Dengan menerapkan teori permainan, turunan dapat memberikan strategi yang paling baik untuk perusahaan yang sedang bersaing.
Turunan sering digunakan untuk mencari titik ekstremum dari sebuah fungsi. Persamaan-persamaan yang melibatkan turunan disebut persamaan diferensial dan sangat penting dalam mendeskripsikan fenomena alam. Turunan dan perampatannya (generalization) sering muncul dalam berbagai bidang matematika, seperti analisis kompleks, analisis fungsional, geometri diferensial, dan bahkan aljabar abstrak.

bagai bidang matematika, seperti analisis kompleks, analisis fungsional, geometri diferensial, dan bahkan aljabar abstrak.
[sunting] Turunan
Artikel utama untuk bagian ini adalah: turunan
Misalkan x dan y adalah bilangan real di mana y adalah fungsi dari x, yaitu y = f(x). Salah satu dari jenis fungsi yang paling sederhana adalah fungsi linear. Ini adalah grafik fungsi dari garis lurus. Dalam kasus ini, y = f(x) = m x + c, di mana m dan c adalah bilangan real yang tergantung pada garis mana grafik tersebut ditentukan. m disebut sebagai kemiringan dengan rumus:

di mana simbol Δ (delta) memiliki arti "perubahan nilai". Rumus ini benar adanya karena
y + Δy = f(x + Δx) = m (x + Δx) + c = m x + c + m Δx = y + mΔx.
Diikuti pula Δy = m Δx.
Namun, hal-hal di atas hanya berlaku kepada fungsi linear. Fungsi nonlinear tidak memiliki nilai kemiringan yang pasti. Turunan dari f pada titik x adalah pendekatan yang paling baik terhadap gagasan kemiringan f pada titik x, biasanya ditandai dengan f'(x) atau dy/dx. Bersama dengan nilai f di x, turunan dari f menentukan pendekatan linear paling dekat, atau disebut linearisasi, dari f di dekat titik x. Sifat-sifat ini biasanya diambil sebagai definisi dari turunan.
Sebuah istilah yang saling berhubungan dekat dengan turunan adalah diferensial fungsi.


Garis singgung pada (x, f(x))
Bilamana x dan y adalah variabel real, turunan dari f pada x adalah kemiringan dari garis singgung grafik f' di titik x. Karena sumber dan target dari f berdimensi satu, turunan dari f adalah bilangan real. Jika x dan y adalah vektor, maka pendekatan linear yang paling mendekati grafik f tergantung pada bagaimana f berubah di beberapa arah secara bersamaan. Dengan mengambil pendekatan linear yang paling dekat di satu arah menentukan sebuah turunan parsial, biasanya ditandai dengan ∂y/∂x. Linearisasi dari f ke semua arah secara bersamaan disebut sebagai turunan total. Turunan total ini adalah transformasi linear, dan ia menentukan hiperbidang yang paling mendekati grafik dari f. Hiperbidang ini disebut sebagai hiperbidang oskulasi; ini secara konsep sama dengan mengambil garis singgung ke semua arah secara bersamaan.
[sunting] Penerapan turunan
[sunting] Optimalisasi
Jika f adalah fungsi yang dapat diturunkan pada R (atau interval terbuka) dan x adalah maksimum lokal ataupun minimum lokal dari f, maka turunan dari f di titik x adalah nol; titik-titik di mana f '(x) = 0 disebut titik kritis atau titik pegun (dan nilai dari f di x disebut nilai kritis). (Definisi dari titik kritis kadang kala diperluas sampai meliputi titik-titik di mana turunan suatu fungsi tidak eksis.) Sebaliknya, titik kritis x dari f dapat dianalisa dengan menggunakan turunan ke-dua dari f di x:
• jika turunan ke-dua bernilai positif, x adalah minimum lokal;
• jika turunan ke-dua bernilai negatif, x adalah maksimum lokal;
• jika turunan ke-dua bernilai nol, x mungkin maksimum lokal, minimum lokal, ataupun tidak kedua-duanya. (Sebagai contohnya, f(x)=x³ memiliki titik kritis di x=0, namun titik itu bukanlah titik maksimum ataupun titik minimum; sebaliknya f(x) = ±x4 mempunyai titik kritis di x = 0 dan titik itu adalah titik minimum maupun maksimum.)
Ini dinamakan sebagai uji turunan ke dua. Sebuah pendekatan alternatif lainnya, uji turunan pertama melibatkan nilai f ' di kedua sisi titik kritis.
Menurunkan fungsi dan mencari titik-titik kritis biasanya merupakan salah satu cara yang sederhana untuk mencari minima lokal dan maksima lokal, yang dapat digunakan untuk optimalisasi. Sesuai dengan teorema nilai ekstremum, suatu fungsi yang kontinu pada interval tertutup haruslah memiliki nilai-nilai minimum dan maksimum paling sedikit satu kali. Jika fungsi tersebut dapat diturunkan, minima dan maksima hanya dapat terjadi pada titik kritis atau titik akhir.
Hal ini juga mempunyai aplikasi tersendiri dalam proses sketsa grafik: jika kita mengetahui minima dan maksima lokal dari fungsi yang dapat diturunkan tersebut, sebuah grafik perkiraan dapat kita dapatkan dari pengamatan bahwa ia akan meningkat dan menurun di antara titik-titik kritis.
Di dimensi yang lebih tinggi, titik kritis dari nilai skalar fungsi adalah titik di mana gradien fungsi tersebut adalah nol. Uji turunan kedua masih dapat digunakan untuk menganalisa titik-titik kritis dengan menggunakan eigennilai matriks Hessian dari turunan parsial ke-dua fungsi di titik kritis. Jika semua eigennilai tersebut adalah positif, maka titik tersebut adalah minimum lokal; jika semuanya negatif, maka titik itu adalah maksimum lokal. Jika ada beberapa yang positif dan beberapa yang negatif, maka titik kritis tersebut adalah titik pelana, dan jika tidak ada satupun dari keadaan di atas yang terpenuhi (misalnya ada beberapa eigennilai yang nol) maka uji tersebut inkonklusif.
[sunting] Kalkulus variasi
Artikel utama untuk bagian ini adalah: Kalkulus variasi
Salah satu contoh masalah optimalisai adalah mencari kurva terpendek anatar dua titik di atas sebuah permukaan dengan asumsi kurva tersebut harus berada di permukaan tersebut. Jika permukaan tersebut adalah bidang rata, maka kurva yang paling pendek berupa garis lurus. Namun jika permukaannya tidak bidang, maka kita tidak bisa mengetahui secara pasti kurva yang paling pendek. Kurva ini disebut sebagai geodesik, dan salah satu masalah paling sederhana di kalkulus variasi adalah mencari geodesik.Contoh lainnya adalah mencari luas permukaan paling kecil yang dibatasi oleh kurva tertutup di ruang tiga dimensi. Permukaan ini disebut sebagai permukaan minimum, dan ini dapat dicari dengan menggunakan kalkulus variasi.
[sunting] Fisika
Kalkulus sangatlah penting dalam fisika. Banyak proses fisika yang dapat dideskripsikan dengan turunan, disebut sebagai persamaan diferensial. Fisika secara spesifik mempelajari perubahan kuantitas terhadap waktu, dan konsep "turunan waktu"—laju perubahan terhadap perubahan waktu— sangatlah penting sebagai definisi yang tepat pada beberapa konsep penting. Sebagai contohnya, turunan waktu terhadap posisi benda sangat penting dalam fisika Newtonan:
• kecepatan adalah turunan posisi benda terhadap waktu.
• percepatan adalah turunan dari kecepatan benda terhadap waktu, ataupun turunan kedua posisi benda terhadap waktu.
Sebagai contoh, jika posisi sebuah benda dalam sebuah garis adalah:

maka kecepatan benda tersebut adalah:

dan percepatan benda itu adalah:

[sunting] Persamaan diferential
Artikel utama untuk bagian ini adalah: Persamaan diferensial
Persamaan diferensial adalah hubungan antara sekelompok fungsi dengan turunan-turunannya. Persamaan diferensial biasa adalah sebuah persamaan diferensial yang menghubungkan fungsi dengan sebuah variabel ke turunannya terhadap variabel itu sendiri. Persamaan diferensial parsial adalah persamaan diferensial yang menghubungkan fungsi yang memiliki lebih dari satu variable ke turunan parsialnya. Persamaan diferensial muncul secara alami dalam sains fisik, model matematika, dan dalam matematika itu sendiri. Sebagai contoh, Hukum kedua Newton yang menggambarkan hubungan antara percepatan dengan posisi dapat dimulai dengan persamaan diferensial biasa:

Persamaan kalor di variable satu ruang yang menggambarkan bagaimana kalor dapat berdifusi melalui satu tongkat yang lurus adalah persamaan diferensial parsial

Di sini u(x, t) adalah temperatur tongkat pada posisi x dan waktu t dan α adalah sebuah tetapan yang bergantung pada seberapa cepat kalor tersebut berdifusi.
[sunting] Teorema nilai purata
Artikel utama untuk bagian ini adalah: Teorema nilai purata
Teorema nilai purata memberikan hubungan antara nilai dari turunan dengan nilai dari fungsi asal. Jika f(x) adalah fungsi yang bernilai real dan a dan b adalah bilangan dengan a < b, maka teorema nilai purata mengatakan bahwa kemiringan antara dua titik (a, f(a)) dan (b, f(b)) adalah sama dengan kemiringan garis singgung f di titik c di antara a and b. Dengan kata lain:

Dalam prakteknya, teorema nilai purata ini mengontrol sebuah fungsi terhadap turunannya. Sebagai contoh, misalkan f memiliki turunan yang sama dengan nol di setiap titik, maka fungsi tersebut haruslah horizontal. Teorema nilai purata membuktikan bahwa hal ini haruslah benar, bahwa kemiringan antara dua titik di grafik f haruslah sama dengan kemiringan salah satu garis singgung di f. Semua kemiringan tersebut adalah nol, jadi garis sembarang antara titik yang satu dengan titik yang lainnya di fungsi tersebut memiliki kemiringan yang bernilai nol. Namun hal ini juga mengatakan bahwa fungsi tersebut tidak naik maupun turun.
[sunting] Polinomial Taylor dan deret Taylor
Artikel utama untuk bagian ini adalah: polinomial Taylor
Artikel utama untuk bagian ini adalah: deret Taylor
Turunan memberikan pendekatan linear yang paling baik, namun pendekatan ini bisa sangat berbeda dengan fungsi asalnya. Salah satu cara untuk memperbaiki pendekatan ini adalah dengan menggunakan pendekatan kuadratik. Linearisasi dari fungsi bernilai real f(x) pada suatu titik x0 adalah linearisasi polinomial a + b(x - x0), dan sangat mungkin untuk mendapatkan pendekatan yang lebih baik dengan menggunakan polinomial kuadratik a + b(x - x0) + c(x - x0)². Masih lebih baik lagi apabila menggunakan polinomial kubik a + b(x - x0) + c(x - x0)² + d(x - x0)³, dan gagasan ini dapat diperluas sampai polinomial berderajat tinggi. Untuk setiap polinomial ini, haruslah terdapat pilihan nilai koefisien yang paling tepat untuk a, b, c, dan d yang membuat pendekatan ini sedekat mungkin.
Untuk a, pilihan nilai yang terbaik selalu bernilai f(x0), dan untuk b selalu bernilai f'(x0). Untuk c, d, dan koefisien berderajat tinggi lainnya, koefisien-koefisien ini ditentukan dengan turunan berderajat tinggi dari f. c haruslah f''(x0)/2, dan d haruslah f'''(x0)/3!. Dengan menggunakan koefisen ini, kita mendapatkan polinomial Taylor dari f. Polinomial taylor berderajat d adalah polinomial dengan derajat d yang memberikan pendekatan yang paling baik terhadap f, dan koefisiennya dapat ditentukan dengan perampatan dari rumus di atas. Teorema Taylor memberikan batasan-batasan yang detail akan seberapa baik pendekatan tersebut. Jika f adalah polinomial dengan derajat yang lebih kecil atau sama dengan d, maka polinomial Taylor dengan derajat d sama dengan f.
Batasan dari polinomial Taylor adalah deret tidak terbatas yang disebut sebagai deret Taylor. Deret Taylor biasanya merupakan pendekatan yang cukup dekat dengan fungsi asalnya. Fungsi-fungsi yang sama dengan deret Taylor disebut sebagai fungsi analitik. Adalah tidak mungkin untuk fungsi yang tidak kontinu atau memiliki sudut yang tajam untuk menjadi fungsi analitik. Namun terdapat pula fungsi mulus yang bukan analitik.
[sunting] Teorema fungsi implisit
Artikel utama untuk bagian ini adalah: Teorema fungsi implisit
Beberapa bentuk geometri alami, seperti lingkaran, tidak dapat digambar sebagai grafik fungsi. Jika F(x, y) = x² + y², maka lingkaran adalah himpunan pasangan (x, y) di mana F(x, y) = 0. Himpunan ini disebut sebagai himpunan nol (zero set) (bukan himpunan kosong) dari F. Ini tidaklah sama dengan grafik F, yang berupa kerucut. Teorema fungsi implisit mengubah relasi seperti F(x, y) = 0 menjadi fungsi . Teorema ini menyatakan bahwa jika F adalah secara kontinu terdiferensialkan, maka di sekitar kebanyakan titik-titik, himpunan nol dari F tampak seperti grafik fungsi yang digabungkan bersama. Titik di mana hal ini tidak benar ditentukan pada kondisi turunan F. Lingkaran dapat digabungkan bersama dengan grafik dari dua fungsi . Di setiap titik lingkungan dari lingkaran kecuali (-1, 0) dan (1, 0),satu dari dua fungsi ini mempunyai grafik yang mirip dengan lingkaran. (Dua fungsi ini juga bertemu di (-1, 0)dan (1, 0), namun hal ini tidak dipastikan oleh teorema fungsi implisit).
Teorema fungsi implisit berhubungan dekat dengan teorema fungsi invers yang menentukan kapan sebuah fungsi tampak mirip dengan grafik fungsi terbalikkan yang digabungkan bersama.
Arti "KALKULUS"

Ilmu matematika adalah salah satu ilmu dasar yang disetiap cabang materi pelajaran selalu hadir, tidak hanya di bidang ilmu eksak saja di ilmu akutansi, ekonomi, bahkan dalam ilmu sejarah pun juga sempat muncul. Suka atau tidak suka aplikasi dasar matematika (tambah, Kurang, Kali, Bagi) merupakan ilmu yang sangat mendasar.
Diantara cabang ilmu matematika yang lain kalkulus mempunyai sebuah keunikan tersendiri. Kalkulus berasal dari bahasa latin “calculus” yang artinya “batu kecil”, untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu mengenai perubahan, sebagaimana geometri adalah ilmu mengenai bentuk dan aljabar adalah ilmu mengenai pengerjaan untuk memecahkan persamaan serta aplikasinya. Kalkulus memiliki aplikasi yang luas dalam bidang-bidang sains, ekonomi, dan teknik; serta dapat memecahkan berbagai masalah yang tidak dapat dipecahkan dengan aljabar elementer.
Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral yang saling berhubungan melalui teorema dasar kalkulus. Pelajaran kalkulus adalah pintu gerbang menuju pelajaran matematika lainnya yang lebih tinggi, yang khusus mempelajari fungsi dan limit, yang secara umum dinamakan analisis matematika.

SEJARAH KALKULUS


ISAAC NEWTON

Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu zaman kuno, zaman pertengahan, dan zaman modern. Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi tidak dikembangkan dengan baik dan sistematis. Perhitungan volume dan luas yang merupakan fungsi utama dari kalkulus integral bisa ditelusuri kembali pada Papirus Moskwa Mesir (c. 1800 SM) di mana orang Mesir menghitung volume piramida terpancung. Archimedes mengembangkan pemikiran ini lebih jauh dan menciptakan heuristikyang menyerupai kalkulus integral.

Pada zaman pertengahan, matematikawan India, Aryabhata, menggunakan konsep kecil takterhingga pada tahun 499 dan mengekspresikan masalah astronomi dalam bentuk persamaan diferensial dasar. Persamaan ini kemudian mengantar Bhāskara II pada abad ke-12 untuk mengembangkan bentuk awal turunan yang mewakili perubahan yang sangat kecil takterhingga dan menjelaskan bentuk awal dari “Teorema Rolle”. Sekitar tahun 1000, matematikawan Irak Ibn al-Haytham (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat empat, dan dengan menggunakan induksi matematika, dia mengembangkan suatu metode untuk menurunkan rumus umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral. Pada abad ke-12, seorang Persia Sharaf al-Din al-Tusimenemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial. Pada abad ke-14, Madhava, bersama dengan matematikawan-astronom dari mazhab astronomi dan matematika Kerala, menjelaskan kasus khusus dari deret Taylor, yang dituliskan dalam teks Yuktibhasa.

Pada zaman modern, penemuan independen terjadi pada awal abad ke-17 di Jepang oleh matematikawan seperti Seki Kowa. Di Eropa, beberapa matematikawan seperti John Wallis danIsaac Barrow memberikan terobosan dalam kalkulus. James Gregory membuktikan sebuah kasus khusus dari teorema dasar kalkulus pada tahun 1668.



LEIBNIZ

Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang ilmuwan tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Newton mengaplikasikan kalkulus secara umum ke bidang fisikasementara Leibniz mengembangkan notasi-notasi kalkulus yang banyak digunakan sekarang.

Ketika Newton dan Leibniz mempublikasikan hasil mereka untuk pertama kali, timbul kontroversi di antara matematikawan tentang mana yang lebih pantas untuk menerima penghargaan terhadap kerja mereka. Newton menurunkan hasil kerjanya terlebih dahulu, tetapi Leibniz yang pertama kali mempublikasikannya. Newton menuduh Leibniz mencuri pemikirannya dari catatan-catatan yang tidak dipublikasikan, yang sering dipinjamkan Newton kepada beberapa anggota dari Royal Society.

Pemeriksaan secara terperinci menunjukkan bahwa keduanya bekerja secara terpisah, dengan Leibniz memulai dari integral dan Newton dari turunan. Sekarang, baik Newton dan Leibniz diberikan penghargaan dalam mengembangkan kalkulus secara terpisah. Adalah Leibniz yang memberikan nama kepada ilmu cabang matematika ini sebagai kalkulus, sedangkan Newton menamakannya “The science of fluxions”.

Sejak itu, banyak matematikawan yang memberikan kontribusi terhadap pengembangan lebih lanjut dari kalkulus.

Kalkulus menjadi topik yang sangat umum di SMA dan universitas zaman modern. Matematikawan seluruh dunia terus memberikan kontribusi terhadap perkembangan kalkulus.

PENGARUH PENTING

Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq, Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan pengaruh yang kuat terhadap perkembangan fisika.

Aplikasi kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, dan optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luas, volume,panjang busur, pusat massa, kerja, dan tekanan. Aplikasi lebih jauh meliputi deret pangkat dan deret Fourier.

Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak. Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret takterhingga, yang kemudian berhasil memecahkan paradoks tersebut.

Beberapa Referensi tentang Mata Kuliah KALKULUS bisa di download dibawah ini:


1. Pembahasan Kalkulus Purcell edisi 8

2. Materi 1

3. Materi 2

4. Materi 3

5. Soal-soal
Diposkan oleh indahnya sains di 20:23
Views: 1454 | Added by: budi | Rating: 0.0/0
Total comments: 0
Name *:
Email *:
Code *:
Login form

KOMENTAR

OLAHRAGA

PENGUNJUNG

Calendar
«  July 2011  »
SuMoTuWeThFrSa
     12
3456789
10111213141516
17181920212223
24252627282930
31

Entries archive

BERITA TERKINI


Copyright MyCorp © 2024